Water Management for Stimulation Operations

D. Steven Tipton, P.E.
March 5, 2013
Society of Petroleum Engineers – Mid-Continent Section
Tulsa, OK
Water

Water, like religion and ideology, has the power to move millions of people. Since the very birth of human civilization, people have moved to settle close to it. People move when there is too little of it. People move when there is too much of it. People journey down it. People write, sing and dance about it. People fight over it. And all people, everywhere and every day, need it.

Mikhail Gorbachev
Why Is Water Important to the Petroleum Industry?

- Water is the most common and most heavily used fluid in the petroleum industry.
- Water is produced along with oil and gas from nearly every well.
- Water is used as a base fluid in production, drilling, and completion operations.
- Water will be produced, recycled, injected, mixed, cleaned, and reinjected.
- Water’s use and protection are emotionally charged subjects in many communities.
Significance of Water to Our Business

- More than ever, water is an integral part of the success of oil and gas operations. So, think about this

- No Water

- No Fracturing

- No Oil and Gas Company’s – Resource Plays
Water Management Cycle

- **Water source**
 - Subsurface aquifers
 - Rivers, lakes or ponds
 - Rural or urban water supplies
 - Gray Water
 - Acid Mine Drainage

- **Water transport**
 - Pipeline
 - Trucking

- **Water storage**
 - Frac Tanks (500 bbls)
 - Modular Tanks (up to 40,000 bbls)
 - Portadam (size as required)
 - Pits or ponds (100,000+ bbls)

- **Water treatment and reuse**
 - Biocides
 - Settling
 - Ecosphere
 - Electrocoagulation
 - Distillation
 - Crystallization

- **Water disposal**
 - Evaporation
 - Water disposal wells
Water Sources

- Subsurface Aquifers using water wells
- Ground Water from naturally occurring or man made ponds
Water Sources
Water Transportation
Water Transport – Pipeline and Pump
Water Transport - Trucking
Water Storage
Why Is Water Storage Important?

- Water is the base fluid and biggest component of any hydraulic fracturing operation.
- Water volumes required for typical completions range from 100,000 to 500,000 barrels per well.
- Water must be stored near the completion operation in sufficient quantities to finish a job at the desired pump rate.
- In the first 90 days after fracturing a well can produce from 30 to 80% of its load back.
- To recycle water there has to be enough storage for both the dirty water and the processed clean water.
- Water must be stored in a manner that is economically and environmentally sound.
Frac Tanks

Capacity

500 BBL

Transported by Truck

Estimated Cost of Storage

$0.06 to $0.09/BBL/day

Number needed for a 250,000 BBL slick water frac

500

Normally use 15 frac tanks on a job
Fresh Water Impoundment – Lined

Size can vary

Operational Requirements
Terrain

Cost to Construct

$150,000 to $200,000

Estimated Cost of Storage

$0.0012 to $0.0016/BBL/d

Number needed for a 250,000 BBL slick water frac

1
Fresh Water Impoundment - Unlined

Impoundments can be
- Naturally occurring
- Man made

Size can vary
- Operational Requirements
- Terrain

Cost to Construct
- $75,000 to $150,000

Estimated Cost of Storage
- $0.0006 to $0.0012/BBL/d

Number needed for a 250,000 BBL slick water frac
- 1
Large Capacity Above Ground Moveable Tanks

Size Can Range by type and make of tank

- **Rectangular**
 - 2,200 to 15,400 BBL

- **Circular**
 - 4,500 to 42,000 BBL

- **Portadam**
 - Determined by user
Rhinokore Tank

Capacity
2,200 to 15,000 BBL

Transported by Truck

Purchase or Lease Options

Estimated Cost of Storage
$0.083 to $0.089/BBL/d

Number needed for a 250,000 BBL slick water frac
16+
Large Capacity Above Ground Moveable Tanks

Capacity
4,500 to 42,000 BBL

Transported by Truck

Purchase or Lease Options

Estimated Cost of Storage
$0.064 to $0.080/BBL/d

Number needed for a 250,000 BBL slick water frac
6+
Portadam

Size can vary

Storage Required (Larger More Economical)

Terrain

Good for Long Term Application

Estimated Cost of Storage

$0.018 to $0.04/BBL/d

Number needed for a 250,000 BBL slick water frac

1 or more depending on size
Water Treatment and Reuse
Recycling Challenge – Water Quality

- Fresh water
 - No problems with frac

- Produced water & flow back water
 - Minerals can cause scale
 - Minerals can interfere with frac gel
 - Water quality varies widely
 - Newfield has fractured wells with 100% produced water with no problems

- Study to determine water quality limits for recycling
 - Results specific to portion of basin
 - Results will point to type of water treatment needed

- Regulations are becoming more stringent
 - Recycle or produced water pits have to be permitted
 - OK and TX require design and certification by a professional engineer
Concerns with Produced Water Reuse

Formation Damage
- Potential for solids to compromise fracture geometry
 - Improper fracture propagation
 - Potential for reduction in production
- Suspended colloids not removed by simple filtration

Scaling
- Increased potential with higher hardness
- Theoretical calculations and experiments required

Fluid Formulation
- Varied water quality
- Polymer hydration issues in high salinity water
- Greater issue with polymer crosslinking

Source: Halliburton
There are a number of treatment options available to producers, with options including dilution, settling, chemical treatment, filtration, clarification, electro-coagulation, and distillation.

- **Dilution**
 - Cost: ~$1.50 - $2.00/bbl
 - Involves blending flowback or produced water with freshwater during fracturing.
 - Not free - has a handling cost for frac tanks, containment, water transfer, etc.

- **Settling**
 - Cost: ~$2.00 - $2.50/bbl
 - Must allow enough residence time in flow back pits or frac tanks for solids to settle.
 - Risks associated with storing raw water on location for long periods of time.

- **Filtration**
 - Cost: ~$2.00 - $3.00/bbl
 - Bag filters, disk filters, or sand filters can be used. Other types available.
 - Issues can arise from expended filter sock disposal and bacteria introduction.
 - Water sources for back flushing system can be logistically difficult.

- **Chemical Precipitation**
 - Cost: ~$2.50 - $4.00/bbl
 - Involves pH adjustment and the addition of polymers or other flocculants.
 - Issues can arise from excess sludge formation and sludge disposal.
 - Chemical drum or tote management can be logistically difficult on location.

- **Clarification**
 - Cost: ~$3.50 - $4.50/bbl
 - Involves the use of equipment including DAFs or clarifiers.
 - Typically involves chemical precipitation in conjunction with clarification equipment.
 - Advantages include few moving parts and less downtime.

- **Electro-Coagulation**
 - Cost: ~$4.50 - $5.50/bbl
 - Sacrificial plates create a hydrolyzed metal sweet floc that significantly lowers total suspended solids (TSS), greases and oil, and in some cases metals count.
 - High operating costs relative to other TSS treatment systems.

- **Distillation**
 - Cost: ~$5.50 - $8.00/bbl
 - Highest effluent water quality. Can potentially be handled in freshwater impoundments with approved NPDES permits.
 - Highest operating costs due to energy requirements.
 - Energy cost can be mitigated by running off of compressor station waste heat or natural gas.
Centralized Facility

- Fresh water supply
- Fresh water storage
- Water recycling technology
- Influent/ Effluent storage
- Class II UWD well

Source: Halliburton
Why Newfield Recycles Water

- Saving Fresh Water – 10 million barrels per year
- Saving Money – KCl savings of $30 million per year
- Limited supply of fresh water due to drought
- Reduce the need to dispose of produced water
- Potential to reduce transportation costs
- Environmentally responsible
- Improved social license
Load Recovery

Flow Back
• Using pipeline and transfer pumps
• Capacity over 500 BPH
• Replenish frac water supply

Trucking
• Could have 100 trucks per day to haul water from a well flowing 500 BPH
• Determine break even between pumping/pipeline changes and trucking costs plus disposal fees
Water Disposal

- Evaporation

- Salt Water Disposal Well
How Much Water Newfield Recycled

For Newfield’s Britt Ranch Fracturing Operations

50 Million Barrels

$ 200 Million Saved
Questions!??!!?