Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Charles Pope

Stop, Drop And Circulate, An Engineered Approach To Coiled Tubing Intervention in Horizontal Wells

#SPEDL
Stop, Drop And Circulate
An Engineered Approach To Coiled Tubing Intervention in Horizontal Wells

Charles Pope
Complete Shale
Agenda

• Global coiled tubing usage
• Problems with historical practices
• Results from a few case histories
• Take away
Where and how coiled tubing is used
Coiled Tubing Intervention

Initial Completion:
• Well Prep
• Perforating
• After Frac Drillouts
• Coiled Tubing Fracs

Cleanouts Prior to:
• Acid Stimulation
• Chemical Treatments

Also used for:
• Logging
• Fishing
• P&A
Typical Wellbore Configuration

- Coiled Tubing
- BHA
- Bit
- Bottom Hole Assembly
- Composite Frac Plug
- Plug Debris
- Sand and Composite Material
Annual Horizontal Wells Drilled

Sources: Rystad Energy, 2017; Baker Hughes
Active Coiled Tubing Units

1472 Active Units

- Russia/CIS: 330
- North America: 324
- Europe/Africa: 122
- Latin America: 211
- Middle East: 218
- Far East: 267
Horizontal Wells Drive Larger Pipe

- 2014: 66% 2" Coil
- 2015: 51% 2" Coil
- 2016: 47% 2" Coil
- 2017: 37% 2" Coil

- 2014: 32% 2 3/8" Coil
- 2015: 45% 2 3/8" Coil
- 2016: 41% 2 3/8" Coil
- 2017: 54% 2 3/8" Coil

- 2014: 2% 2 5/8" Coil
- 2015: 4% 2 5/8" Coil
- 2016: 12% 2 5/8" Coil
- 2017: 9% 2 5/8" Coil

NOV/Quality Tubing 2017
Why is this Important?

Spent $60MM

28% of spend

Top 10 drillouts cost $17MM

Cost overruns on 30% of wells

Average costs $250k

Stuck pipe: 1 well in 16

2015
Historical Practices

- Very little engineering support
- Applied vertical well techniques
- Short trips
- Gel sweeps
- No digital data gathered
Short Trips

- Short trip is pulling out of the hole
- Usually into the vertical
- Uses the Bottom Hole Assembly to clean the hole
How Common is Stuck Pipe?

• From 2001 to 2010: stuck pipe incidents increased 43%. (Burgos, SPE 163914)

• 2012 in BC: stuck ~0.25 hrs per plug. (Lyndsey, SPE 178644-MS)

• From 2013 to 2015: 600 interventions, stuck 14 hrs per well. (Pope, SPE 187337-MS)

“An ounce of prevention is worth a pound of cure.” Benjamin Franklin
Causes of Stuck Pipe

- Sand cleanouts represent the biggest hazard.
- Routine interventions account for 77%.
Where do we get Stuck?

- 26 confirmed events
- 22 short trips
- 2 when picking up off bottom
- No stuck events in curve
- 85% of time stuck pipe is related to the short trip

Location of stuck pipe event normalized by lateral length
Effect of Short Trips on Time

Example: 16,500 ft 30 Plugs
Sweeps

- 10 bbl sweep after drilling every plug
- 33% of wellbore volume is sweep material
Velocity and Viscosity

Model Parameters:
- 5 ½” Casing
- 2” Coiled Tubing
- 3 BPM
- 175 fpm
- 108 cp

\[\mu_a = 21 \text{ cp} \]

\[\mu_a = 370 \text{ cp} \]

Modified from Hutchings (2013) and Chin (2001)
Lift and Drag Forces

Modified from Farajzadeh, 2004

\[F_L = \frac{0.761 \tau_w^{1.5} d_p^3 \rho^{0.5}}{\mu} \]

\[F_d = 3\pi \mu d_p \nu_p \]
Investigate Laboratory Results

• Observe the fluid-debris interaction
• Are basic assumptions about hole cleaning valid?
• Many service companies have flow loops
• Several Universities have horizontal flow loop consortiums
Debris Movement
Viscous Fluid

200 Funnel vis, 3 BPM, 260 fpm

Emerald Surf
Debris Movement in Slickwater

27 Funnel vis, 3 BPM, 260 fpm

Emerald Surf 2013
Annular Velocity and Reynolds Number

\[Re = \frac{928 \rho v (d_2 - d_1)}{60 \mu} \]

<table>
<thead>
<tr>
<th>BPM</th>
<th>AV, fpm</th>
<th>Funnel Vis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>260</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66,982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>385</td>
</tr>
</tbody>
</table>
Sweep Displaced by Slickwater
British Columbia Case History

- Wiper Trip Matrix
- Stuck pipe: every well
- Fluid Costs > $40k
- Re-entrainment of solids a function of Reynolds number

SPE 178644-MS/URTeC:2155463 (2015)
• Single Trip Cleanouts (some wiper trips)
• Gel Sweeps minimized
• Chemical usage down 95%
• Reynolds number >20,000
Eagle Ford Shale Case History

- Single Trip Drillouts
- Non-Viscous Fluids
- ~2x plug recovery

Gel elimination trial

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pounds Per Plug Recovered</td>
<td>Gel</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>4.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

SPE179070–MS (2016)
Woodford Case History

- 33 similar wells
- 2” Coiled Tubing, 5 ½” Casing
- 5000 ft laterals
- 30 or more composite frac plugs
- 1 coiled tubing vendor
- 1 chemical vendor
- No short trips
- No gel sweeps
Debris at Surface

- Weigh Debris
- Record Time
- Plot Data
Debris Monitoring

- Better hole cleaning
 - Higher AV’s up to 300 fpm
 - Higher Re up to 50,000
- BHA is not bringing up additional debris
Sand Monitoring

- Acoustic meters provide continuous sand measurement
- Good hole cleaning
 - Linear response
- Curve flattens as a BHA nears the surface
Woodford Results

- No stuck pipe
- Costs decreased 50%
- Time on location improved 50%

SPE 187337–MS (2017)
Location of Plug Debris

AV=200 fpm
Slickwater: 1/5 of AV
Sweep: 1/20 of AV

BHA collides with plug debris
BHA travels in debris field to surface
WHAT HAPPENS TO A GEL SWEEP WHEN IT IS PUMPED DOWNHOLE?
What happens to a gel sweep downhole?

Commercial Cementing Simulator
2" Coil in 5 ½" casing
5000 ft lateral
20 bbl Sweep
Initial viscosity 150 cp

Final Viscosity
~10 cp

Sweep elongates to 2500 ft
Mixing with wellbore fluids
Travels over top of debris

Flow Profile
Polymers Breakdown

- Mechanical forces
- Pumps, motors, bit jets, etc.
- Chemical Reactions
 - O2
- Fluid loses 65-85% of original viscosity
OTHER CRITICAL ISSUES
Low Bottomhole Pressure

• Information Gap
 – Bottomhole pressure
 – Required N2 injection rate
 – Engineers do not recommend N2 injection rates
• Field is expected to just know the correct N2 rate
 – Results in over injection
 – Drives costs higher
• Wait too long to start N2
• Several commercial models are available
• Use gas lift curves to estimate circulation bottomhole pressure
Friction Reducers

• Reduces the pumping pressure
• Polyacrylamide is most common
• Does not extend reach
• More is not better
 – Lab based loading
• Will not prevent stuck pipe
• Check effectiveness
 – Pump pressure before and after
 – Discontinue if not effective
Metal to Metal Friction Reducers

- Often called “Pipe on Pipe” (POP)
- Only works where there is:
 - metal to POP to metal contact
- Usually batch treated
- Usually applied too late
- Will not prevent stuck pipe
- Check effectiveness
 - Weight check before and after
 - Discontinue if not effective
Warning Signs of Stuck Pipe

- Reduced or lost returns
- Abnormal weight check
- Erratic pump pressure/motor stalls
- Loss of plug debris being collected in plug catcher
- Reduction in produced sand at the surface
Preventing Stuck Pipe

What to do:

- Stop, Drop and Circulate
 - Do not continue to pull into tight spot
- Circulate 1 hole volume
- Perform a weight check
- Repeat until surface weight returns to trend

Torque and Drag (TAD) Plot

Pulling Tight
Increase Engineering Involvement

- Create TAD Roadmap
- Model Cleanout
- Plan Fluid System
- Data Requirements

Procedure
Take Away

An Engineering Approach

• Use bit/BHA to drillout debris
• Use fluid to clean the hole
• Improved hole cleaning
 – High annular velocities
 – High Reynolds numbers
• Electronically record all the data
• Learn from the data
• Observe warning signs of getting stuck
 – Stop, Drop and Circulate
Thank You

- Complete Shale
- Drillout Group
- Industry Partners
- My Family
- SPE Foundation
Thank You!

Questions?

Charles Pope
Cell 405-808-5228
Charles.pope@completeshale.com
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation.
Visit SPE.org/dl